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bstract
This paper deals with the study of power quality in an isolated system with high wind energy penetration level. An induction wind plant, a
ynchronous power plant and a network constitute the analysed system. The work focuses on studying the effect of mechanical power from wind
n load voltage and network frequency fluctuations. A linear model for the complete system is proposed in order to use eigenfrequencies and Bode
lots to carry out this study.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Nowadays, wind energy has an important impact in electrical
etworks, e.g. its growth rate has been continuously increasing
ver the last years, and wind power energy represents more than
% of the Spanish electrical generation [1]. In isolated systems,
he influence of wind energy is especially relevant. The Canary
slands are an example.

One of the typical problems of induction wind energy con-
erters (WEC) is the variation of their delivered power, whose
ain cause is the random behaviour of wind. In addition, peri-

dic fluctuations can appear in electrical power, which are
ainly due to wind shear and tower shadow effect, as shown in
easurements made by the authors [4,6,7] and other researchers

2,3,5].
In isolated networks with a large number of wind plants the

scillations mentioned above can be transmitted to the electrical
oads and, thus, power quality is affected. In this paper a linear
odel is proposed to analyse the behaviour of these systems.
his study can be carried out using tools such as eigenfrequen-
ies and frequency response. The results are compared to those
hen the wind park is connected through a network to an infinite
us behind a reactance. This means that the network frequency
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s constant, which is equivalent to a power plant with an infinite
nertia constant (H = ∞) [8,11].

. Dynamic model of an induction WEC

The induction generator can be modelled as a voltage source

- � behind the impedance R� + jX�, as can be seen in Fig. 1.
his dynamic model is defined by considering balanced oper-
tion and no stator electromagnetic dynamic effects (constant
lectromagnetic flux), and is known as the third order induction
achine model [9,10].
The internal voltage E- � can be derived from the following

quation [9]:

dE- �

dt
= −jωssE- � − 1

T ′
0

(E- � − j(X0 − X�)I-�) (1)

here ωs is the synchronous frequency in rad/s (100π rad/s in
urope), s the slip, I-� the stator current in p.u. and X0, X� and
′
0 are machine parameters in p.u.

The steady-state equation for the stator current is:

= V- � − E- � (2)
-�
R� + jX�

here V- � is the external voltage of the induction machine in p.u.,
� and X� are the parameters of the machine (see Appendix F)

n p.u.

mailto:afeijoo@uvigo.es
dx.doi.org/10.1016/j.epsr.2006.09.001
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Fig. 1. Scheme of an induction generator in front of the network.

The electromechanical equation (see Appendix B) can be
ritten as:

Pm�

1 − s
− Pe� = 2H�

ds

dt
(3)

here Pm� is the WEC mechanical power (Pm� < 0 for genera-
ion) in p.u., H� the inertia constant in s and Pe� is the electrical
ower (Pe� < 0 for generation) in p.u.

The electrical power in p.u., Pe�, is calculated as:

e� = real
{
E- �I-

∗
�

}
(4)

In this paper, the WEC mechanical power Pm�(t) is repre-
ented with two components [11]:

m�(t) = Pm�0 + �Pm� (5)

here Pm�0 represents the low frequency component of wind
ower, which is obtained from the mean value of the wind,
efined by a Weibull or a Rayleigh distribution [12–14]. In this
aper the Pm�0 component of mechanical power is assumed to
e constant and �Pm� is the power fluctuation with a frequency
f about 1–2 Hz [2–4,6,7].

In order to make easier to study the power fluctuations influ-
nce on power quality, they are assumed to such as:

Pm� = Ps sin θ(t) (6)

here Ps is the amplitude of mechanical sinusoidal fluctuations
n p.u. and θ(t) is the mechanical angle of the turbine in rad and
s defined as:

(t) = θ0 +
∫ t

t0

(1 − s0 + �s)ωpf dt ≈ θ0 + ωpft (7)

nd θ0 is the initial mechanical angle in rad, s0 the initial slip
f the induction generator, �s equal to s − s0 and ωpf is the
requency of power fluctuations due to tower shadow effect in
ad/s, which can be expressed as a function of the wind turbine
otational speed (Ωr) by means of the following equation:

pf = 3Ωr = 3ωs

rp
(8)

here r is the gearbox ratio and p is the number of pole pairs.
In this way, the expression for the power fluctuation can be

ritten as:

Pm� = Ps sin(ωpft + θ0). (9)
. Linear dynamic model of an induction wind park

The linear model for the induction machine is based on the
ollowing considerations [11,15]:

B
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The induction generator has an initial steady-state operating
condition, defined by: E- �0, I-�0, V- �0, s0, Pm0.
Small changes are: �E- � �s ≈ 0, �s � s0, �E- � �E-

∗
α ≈ 0,

�E- � �V-
∗
� ≈ 0 and sin �θ ≈ 0.

Eq. (1) can be linearized as:

d�E- �

dt
= −jωsE- �0 �s + z′ �V- � − z �E- � (10)

here

- = v + jw = jωss0 + 1

T ′
0

(
1 + j

X0 − X�

R� + jX�

)

′
- = v′ + jw′ = 1

T ′
0

X0 − X�

R� + jX�
j

In the same way, the mechanical Eq. (3) is:

�
d�s

dt
= �Pm� + Pm�0

1 − s0
�s − (1 − s0) �Pe� (11)

here h� = 2H�(1 − s0)
Finally, using Eqs. (2) and (4), electrical power can be

xpressed as:

Pe� = g �V r
� + m �V m

� + e �Er
� + f �Em

α (12)

here

-
= g + jm = E- �0

R� − jX�

= real

{
V-

∗
�0 − Er

�0/E�0

R� − jX�

}

= real

{
jV-

∗
�0 − Em

�0/E�0

R� − jX�

}

Taking Eqs. (1)–(3), (11) and (12) into account, and the pre-
ious considerations:

d

dt

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ = A�

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ + B�V�

[
�V r

�

�V m
�

]
+ B�P �Pm�

(13)

here

� =

⎡
⎢⎢⎣

−v w ωsE
m
�0

−w −v −ωsE
r
�0

−e(1 − s0)

h�

−f (1 − s0)

h�

Pm�0

((1 − s0)h�)

⎤
⎥⎥⎦

�V� =

⎡
⎢⎢⎣

v′ −w′

w′ v′

−g(1 − s0) −m(1 − s0)

⎤
⎥⎥⎦
h� h�

�P =
[

0 0
1

h�

]T
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Fig. 2. Scheme of a synchronous generator in front of the network.

The parameters for Eq. (13) should be obtained by aggregat-
ng the different WEC’s in the wind parks under consideration
17,18]. However, this task is not the purpose of this paper and
he simple method has been used, consisting of assuming the
ind parks as being constituted by machines with the param-

ters shown in Appendix F. So, the eigenvalues −7.91 and
4.10 ± 14.68j can be derived from Eq. (13) and their eigen-

requencies are represented in Fig. 4.

. Linear dynamic model of a power plant

The aggregated synchronous generation of a power plant
hen it is formed by coherent synchronous generators can be
odelled as a Thevenin equivalent voltage source E- �, behind

he transient reactance jX�, as can be seen in Fig. 2 [16].
The electromechanical equation for the plant formed by the

ynchronous generators is [10]:

m� − Pe� = −2H�

ωs

d(ω� − ωs)

dt
(14)

d

dt
δ� = ω� − ωs (15)

here δ� is the angle of the internal voltage E- � in rad, ω� the
otational speed of the synchronous machine in rad/s, ωs the syn-
hronous speed in rad/s, Pm� the mechanical power in the power
lant (Pm� < 0 for generation) in p.u., H� the inertial constant
n s and Pe� the real electrical power (Pe� < 0 for generation) in
.u.

The electrical power Pe� is calculated by:

e� = real
{

E- �I-
∗
�

}
(16)

here I-� is the stator current.
The stator current is:

-� = V- � − E- �

jX�
(17)

Taking the voltages in the polar form as:

V- � = V�∠δ′
�

E- � = E�∠δ� = E�∠(δrel
� − δ′

�)
(18)

hen, taking Eq. (17) into account, Eq. (16) can be written as:

E�V�

e� = −

X�
sin δrel

� (19)

Consequently, the incremental dynamic model of the power
lant, from an initial steady-state situation (Pm�0 − Pe�0 = 0;

A
b
s
t

s Research 77 (2007) 1028–1037

�0 = ωs; δ�0; E�0) and assuming small changes, is:

Pm� − �Pe� = −2H�

ωs

d�ω�

dt
(20)

Pe� ≈ ∂Pe�0

∂E�
�E� + ∂Pe�0

∂V�
�V� + ∂Pe�0

∂δrel
�

�δrel
� (21)

The power can be expressed as:

Pe� = −p �E� − q �V� − dE�0 �δ� − d′V�0 �δ′
� (22)

here

= V�0 sin δrel
�0

X�

= E�0 sin δrel
�0

X�

= V�0 cos δrel
�0

X�

′ = −E�0 cos δrel
�0

X�

Machine equations in matrix form are:

d

dt

[
�ω�

E�0 �δ�

]
=

⎡
⎣ 0

−d

h�

E�0 0

⎤
⎦

[
�ω�

E�0 �δ�

]

+
⎡
⎣ −q

h�

−d′

h�

−p

h�

−1

h�

0 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎣

�V�

V�0 �δ′
�

�E�

ΔPm�

⎤
⎥⎥⎥⎦

(23)

here h� = 2H�/ωs.

The system depicted in Eq. (23) has two imaginary eigen-
alues whose frequency depends on inertia constant H�. In
ppendix F, the relationship between nominal power P�,nom

nd inertia constant H� is shown [16]. Using the parameters
n Appendix F, the evolution of the eigenfrequencies shown in
ig. 4 can be obtained.

In synchronous generation there are two automatic control
ystems: P–ω and Q–V regulator. Their configurations are shown
n Appendix E and their parameters are in Appendix F [16].

. Linear dynamic model of a power system with a wind
ark and a power plant

An induction wind park, a conventional power plant and an
lectrical network constitute the complete system (see Fig. 3).

ll the parameters of the network are in p.u. quantities with the
ase values shown in Appendix F. Transformers are not repre-
ented but they have been included and modelled by means of
heir correspondent short-circuit impedances.
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Fig. 3. Scheme of the network.

In order to obtain the complete linear model of the system
hown in Fig. 3, nodal analysis is applied, and the result is:

-

⎡
⎢⎢⎢⎣

�V- �

�V- �′

�V- �

�V- �

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Y- � �E- �

0

Y- � �E- �

0

⎤
⎥⎥⎥⎦ (24)

here

- =

⎡
⎢⎢⎣

Y- � + jωsC� + Y- th� −Y- th� 0 0

−Y- th� Y- th� + Y- �� 0 −Y- ��

0 0 Y- � + Y- �� −Y- ��

0 −Y- �� −Y- �� Y- � + Y- �� + Y- ��

⎤
⎥⎥⎦
(25)

and

- � = 1

jX�

- � = (R� + jX�)−1

- th� = (Rth� + jXth�)−1

So, the relationship between the network and the internal
oltages is:

�V- �

�V- �′

�V- �

�V- �

⎤
⎥⎥⎥⎦ = K-

⎡
⎢⎢⎢⎣

�E- �

0

�E- �

0

⎤
⎥⎥⎥⎦ (26)

here

- =

⎧⎪⎪⎨
⎪⎪⎩

K- i,1 = Y-
−1
i,1 Y- �, i = 1, . . . , 4

K- i,3 = Y-
−1
i,3 Y- �, i = 1, . . . , 4

K- i,j = Y-
−1
i,j , i = 1, . . . , 4, j = {2, 4}

Using the polar form for the synchronous machine and the

omplex form for the induction one, Eq. (26) results in:

�V r
�

�V m
�

]
= K��

[
�Er

�

�Em
�

]
+ K��

[
�E�

E�0 �δ�

]
(27)

�

E
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�V�

V�0 �δ′
�

]
= K��

[
�Er

�

�Em
�

]
+ K��

[
�E�

E�0 �δ�

]
(28)

here

�� =
[

Kr
11 −Km

11

Km
11 Kr

11

]

�� =
[

Kr
13 −Km

13

Km
13 Kr

13

]
TE�

�� = TT
V�

[
Kr

31 −Km
31

Km
31 Kr

31

]

�� = TT
V�

[
Kr

33 −Km
33

Km
33 Kr

33

]
TE�

V� and TE� are the transformation matrix for V- � and E- � (see
ppendix C)

.1. Induction machine

Using nodal Eqs. (27) and (28) with Eq. (13), the equation
or the induction machine can now be written as:

d

dt

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ = A�

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ + B�E�

[
�Er

�

�Em
�

]

+B�E�

[
�E�

E�0 �δ�

]
+ B�P�Pm� (29)

here

�E� = B�V� K��

�E� = B�V� B��

Eq. (29) can be written as:

d

dt

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ = A′

�

⎡
⎢⎣

�Er
�

�Em
�

�s

⎤
⎥⎦ + B′

�

⎡
⎢⎣

�E�

E�0 �δ�

�Pm�

⎤
⎥⎦ (30)

here

′
� =

⎡
⎢⎢⎣

−v + B�E�11 w + B�E�12 ωsE
m
�0

−w + B�E�21 −v + B�E�22 −ωsE
r
�0

−e
1 − s0

h�
+ B�E�31 −f

1 − s0

h�
+ B�E�32

Pm�0

(1 − s0)h�

⎤
⎥⎥⎦
The output for this system is formed by the state variables:
Er

�, �Em
� and �s.

Fig. 4 shows the eigenfrequencies of the system depicted by
q. (30) with the parameters in Appendix F.
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sented in a d–q frame. There is a good agreement between the
two simulations as can be seen in Fig. 6. In the same way, a
comparison between frequency responses of the linear system
(Bode plot) and the in d–q reference is shown in Fig. 7.
ig. 4. Eigenfrequency values in a system formed by a 35 MVA wind park.

.2. Synchronous machine

Eq. (28) can be written as:

�V� = K��11 �Er
� + K��12 �Em

� + K��11 �E�

+K��12E�0 �δ�

V�0 �δ′
� = K��21 �Er

� + K��22 �Em
� + K��21 �E�

+K��22E�0 �δ�

(31)

Using nodal Eq. (31) in Eq. (23), synchronous machine equa-
ions can be written as:

d

dt

[
�ω�

E�0 �δrel
�

]
= A′

�

[
�ω�

E�0 �δrel
�

]
+ B′

�

⎡
⎢⎢⎢⎣

�Er
�

�Em
�

�E�

�Pm�

⎤
⎥⎥⎥⎦ (32)

�ω�

E�0 �δ�

]
= C′

�

[
�ω�

E�0 �δ�

]
+ D′

�

⎡
⎢⎢⎢⎣

�Er
�

�Em
�

�E�

�Pm�

⎤
⎥⎥⎥⎦ (33)

here

′
� =

[
0 k1

E�0 0

]

′
� =

⎡
⎣ k2 k3 k4

−1

h�

0 0 0 0

⎤
⎦

′
� =

[
1 0

0 1

]

′
� =

[
0 0 0 0

0 0 0 0

]

s Research 77 (2007) 1028–1037

nd

1 = −qK��12 − d − d′K��22

h�

2 = −qK��11 − d′K��12

h�

3 = −qK��12 − d′K��22

h�

4 = −p − qK��11 − d′K��12

h�

Eigenvalues of Eq. (32) with the parameters in Appendix F
re shown in Fig. 4.

. Linear model for the complete system

The models presented in the previous paragraphs can be con-
ected as shown in Fig. 5, in order to model the complete system.
he behaviour of this system will be studied choosing mechani-
al power �Pm� as input and with the following outputs: voltage
V� and rotational speed �ω�. In this way, the influence of the
ind park on the variations on load voltage and frequency devi-

tion can be studied.
The linearized equations of a system formed by a 150 MVA

ower plant and a 35 MVA induction wind park (see Appendix
) have been simulated with SIMULINK [20]. These results
ave been compared with those obtained using the commercial
rogram SIMPOW [21], where electrical machines are repre-
Fig. 5. Block diagram of the complete system.
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�V� = Vs sin(ωpft + θ0 ) (34)
ig. 6. Results from simulations with SIMPOW (dq representation) and linear
odel.

Once the linear model has been obtained, the transfer func-
ions �V�(s)/�Pm�(s) and �ω�(s)/�Pm�(s) can be computed.
or a system formed by a 150 MVA power plant and a 35 MVA

nduction wind park (see Appendix F), these functions have 11
oles and the main eigenfrequencies can be seen in Fig. 4.

In order to illustrate the impact of the WEC mechanical power
uctuations in load voltage �V�, the magnitude of the Bode
lot for �V�(s)/�Pm�(s) between 1 and 2 Hz is shown in Fig. 8.
s can be seen, the amplitude of voltage fluctuations increases
hen the nominal power of a power plant decreases. This effect

s greater when compared with a power plant modelled as infinite
us behind a reactance (H� = ∞).

When a similar study is carried out with the speed trans-
er function �ω�(s)/�Pm�(s), the results shown in Fig. 9 are

chieved. These values in Bode plot are much lower than
hose for �V�(s)/�Pm�(s). For example, the maximum value
or �V�(s)/�Pm�(s) is 0.7 and the value corresponding to
ω�(s)/�Pm�(s) is 15 rad/s/p.u. or 0.048 p.u./p.u. The relation-

ig. 7. Frequency response of complete system taking mechanical power Pm�

s input and load voltage V� as output in a system formed by a 150 MVA power
lant and a 35 MVA wind park.

w
t

F
�

ig. 8. Evolution of the Bode plot magnitude for the voltage transfer function
V�(s)/�Pm�(s).

hip between nominal power of the power plant and the peak
or the fluctuation magnitude shown in Figs. 10 and 11 reflects
ore clearly this behaviour.

. Results

Assuming that voltage variations are much higher than the
peed variations, only the behaviour of the load voltage has been
nalysed in this section.

And assuming that the oscillatory power defined in Eq. (9) is
he input for the complete system, the expression for voltage V�

nd speed ω�, can be written as:

′′
here Vs and θ′′
0 represent the amplitude and initial phase for

he oscillations in voltage.

ig. 9. Evolution of the Bode plot magnitude for the speed transfer function
ω�(s)/�Pm�(s).
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ig. 10. Evolution of the peak magnitude values for the voltage transfer function
V�(s)/�Pm�(s).

Values for the amplitudes and phases depicted above can be
btained from the transfer functions evaluated at jΩs, so:

∠θ′′
0

= �V�(s)

�Pm�(s)

∣∣∣∣
s=jΩs

(35)

here considering Eq. (9) �Pm�(jωf) = Ps∠θ0
As shown in Fig. 8, the value for voltage and speed oscilla-

ions depends on the synchronous machines nominal powers and
lso on the frequency Ωs of the mechanical power oscillations.

The results shown in Fig. 10 show that the peak of magnitude
s achieved for values in the neighbourhood of tower shadow

ffect (between 1 and 2 Hz), for a system with the parameters
iven in Appendix F. As this effect is one of the most impor-
ant perturbations in wind parks, this behaviour can lead to high
icker values relating load voltage variations. In Fig. 12 the

ig. 11. Evolution of the peak magnitude values for the speed transfer function
ω�(s)/�Pm�(s).

g
t
t
a
f
c
a

A

y
a

A

E

E
E
A
A
A

Fig. 12. Evolution of the flicker (Pst) related to load voltage variations.

esults of flicker computation are shown [22], by assuming a
essimistic situation where the power oscillation due to tower
hadow has an amplitude of 20% [2,3] with respect to the nom-
nal power of the wind park.

. Conclusion

In this paper, a linear model for the behaviour of a power
ystem with high wind energy penetration is presented. Once
he model has been developed it has been used to study the
ehaviour of the voltage in the load and the frequency in the
etwork when the wind park introduces variations on power.

One of the main perturbations associated with a wind park is
iven by the tower shadow effect. The oscillation frequency of
he electrical power delivered by the wind park in these condi-
ions has a frequency between 1 and 2 Hz. This paper presents
method to evaluate the impact (flicker, voltage variations and

requency deviations) of wind parks on networks under these
onditions. This analysis is more relevant in isolated networks,
s shown in the results.
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ppendix A. Notation of constants and variables

- complex number

modulus of E-

r, Em real or imaginary part of E-
, a matrix or vector
, a constant or parameter
i,j, ai elements of matrix A or vector a
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m

b
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w
r
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Ω

P

P

w
t

A

A

p
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V
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w
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w
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w
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T

A
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K

K

K
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s

u
[
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w

A

B

3 1 2

a1 = T1T3 + T1Tt + T3Tt

T1T3Tt
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ppendix B. Electromechanical equation of induction
achines

The electromechanical equation of an induction machine can
e written as [10]:

m − Te = −J
dΩ

dt
(36)

here Tm and Te are the mechanical and electromagnetic torque,
espectively, in N m (Tm < 0 and Te < 0 for generation), J the
nertia moment in N m s2 and Ω is the rotor speed in rad/s.

In this equation electrical power (Pe) and mechanical power
Pm) can be included if the following relationships are taken into
ccount:

= (1 − s)Ωs (37)

m = TmΩ = Tm(1 − s)Ωs (38)

e = TeΩs (39)

here Ω and Ωs are the rotor and synchronous speeds, respec-
ively. In this way, Eq. (36) can be written as:

Pm

1 − s
− Pe = JΩ2

s
ds

dt
(40)

nd using p.u. values:

Pm

1 − s
− Pe = 2H

ds

dt
(41)

ppendix C. Transformation from complex to polar

In this appendix the transformation between the complex and
olar form is shown. This transformation is applied to the fol-
owing voltage represented in its complex form:

- � = V r
� + jV m

� = V�(cos δ� + j sin δ�) (42)

By applying the Taylor equation, Eq. (42) can be written as:

V- � ≈ ∂V- �

∂V�
�V� + ∂V- �

∂δ�
�δ� (43)

here �V- � = V- � − V- �0. In this way, the complex values can
e given as a function of polar components:

V- � = cos δ�0 �V� − sin δ�0V�0 �δ�

+j(sin δ�0 �V� + cos δ�0V�0 �δ�) (44)

here V- �0 = V�0∠θ�0
The above expression can be written in matrix form:

�V r
�

�V m
�

]
= TV�

[
�V�

V�0 �δ�

]
(45)

here transformation matrix TV� is Hermitian (T−1
V�

= TT
V�

) and

an be written as:

V� =
[

cos δ�0 − sin δ�0

sin δ�0 cos δ�0

]
(46)
s Research 77 (2007) 1028–1037 1035

ppendix D. Network voltages

The relationship between the internal voltages (E- � and E- �)
nd the network voltage V- � is:

�V�

V�0 �δ�

]
= K��

[
�Er

�

�Em
�

]
+ K��

[
�E�

E�0 �δ�

]

= KV�

⎡
⎢⎢⎢⎣

�Er
�

�Em
�

�E�

E�0 �δ�

⎤
⎥⎥⎥⎦ (47)

here

�� = TT
V�

[
Kr

41 −Km
41

Km
41 Kr

41

]

�� = TT
V�

[
Kr

43 −Km
43

Km
43 Kr

43

]
TE�

V� = [
K��|K��

]

ppendix E. P–F and Q–V regulators for the
ynchronous machines

In this paper, a steam turbine and governor model have been
sed to represent the speed regulator of synchronous machines
19]. A block diagram is shown in Fig. 13, and its equation can
e written as:

d

dt

⎡
⎢⎣

�Pm�

�x1

�x2

⎤
⎥⎦ = Aω

⎡
⎢⎣

�Pm�

�x1

�x2

⎤
⎥⎦ + Bω �ω� (48)

here �x1, �x2 and �x3 are state variables

ω =

⎡
⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤
⎥⎦

ω =

⎡
⎢⎣

0

b2

b − a b

⎤
⎥⎦
Fig. 13. Block diagram of speed controller.
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Fig. 14. Block diagram of voltage controller.

2 = T1 + T3 + Tt

T1T3Tt

3 = 1

T1T3Tt

2 = −KRT2

T1T3Tt

3 = −KR

T1T3Tt

In order to model the voltage regulator (see Fig. 14), an IEEE
ype DC1 exciter has been used [16], and its equation can be
ritten:

d

dt

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦ = Av

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦ + Bv �V� (49)

d

dt

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−a′
4 −a′

3 −a′
2 −a′

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0

0

b′
3

b′′
4

⎤
⎥⎥⎥⎦�V� (50)

here

′
A = KA

KE
; T ′

E = TE

KE

′
1 = TATFT ′

E + TATRT ′
E + TATFTR + TFTRT ′

E

TAT ′
ETFTR
′
2 = TAT ′

E+TATF+T ′
ETF+TATR+T ′

ETR+TFTR+KFK′
ATR

TAT ′
ETFTR

′
3 = TA + T ′

E + TF + TR + KFK′
A

TAT ′
ETFTR

a

T
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′
4 = KE

TAT ′
ETFTR

′
3 = −K′

A

TAT ′
ETR

′′
4 = −K′

A

TAT ′
ETRTF − a′

1b
′
3

Using Eq. (31) state equations can be written as:

d

dt

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦ = AV

⎡
⎢⎢⎢⎣

�E�

�y1

�y2

�y3

⎤
⎥⎥⎥⎦ + BV

⎡
⎢⎣

�Er
�

�Em
�

E�0 �δ�

⎤
⎥⎦ (51)

here �y1, �y2 and �y3 are state variables

V =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

b′
3K��11 0 0 1

−a′
4 + b′′

4K��11 −a′
3 −a′

2 −a′
1

⎤
⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

b′
3K��11 b′

3K��12 b′
3K��12

b′′
4K��11 b′′

4K��12 b′′
4K��12

⎤
⎥⎥⎥⎦

ppendix F. System data

.1. Network parameters

Base parameters: Sbase = 100 MVA; frbase = 50 Hz; Ubase =
660 V.
Network impedances (see Fig. 3): Z�� = 0.10 + 0.30j p.u.;
Z�� = 0.03 + 0.15j p.u.; Z� = 1 p.u.

.2. Induction machine parameters

The wind park is formed by 86 fixed speed wind energy con-
erters equipped with induction generators. The parameters for
ach induction machine are:

Nominal voltage: V�,nom = 660 V
Nominal apparent power: S�,nom = 359 kVA
Inertia constant: H� = 3.025 s
Stator resistance: R� = 0.00571 p.u.
Stator reactance: Xs = 0.18781 p.u.
Rotor resistance: Rr = 0.00612 p.u.
Rotor reactance: Xr = 0.06390 p.u.
Magnetizing reactance: Xm = 2.78 p.u.
nd

′
0 = Xr + Xm

ωsRr
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Fig. 15. Inertia constant H�.

Table 1
Coefficients for the calculation of H�

Thermal Hydraulic

Low pressure High pressure

a1 −7.2739 × 108 −3.2740 × 108 −4.6448 × 106

a
a
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X
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o
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o

H

w
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F
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[

[
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[
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C
v
i
E
s

A
v
e
t
a

J
d
f
D
l
p

2 8.4003 × 105 6.3610 × 105 3.5120 × 104

3 −3.2605 × 102 −4.1484 × 102 2.8182 × 102

4 5.9833 12.971 1.5706

0 = Xs + Xm

� = Xs + XrXm

Xr + Xm

The value for the shunt capacitor for the reactive compensa-
ion of induction machine is obtained from the following equality
f reactances: 1/ωsC� = Xm

.3. Synchronous machine parameters

The transient reactance X� is 0.3 p.u.
Values for the constant of inertia H� in s (see Fig. 15) are

btained from Ref. [16]:

� = a1P
3
�,nom + a2P

2
�,nom + a3P

1
�,nom + a4 (52)

here P�,nom is the nominal power in MW for the generation
ystem and a1, a2, a3 and a4 are coefficients defined in Table 1.

.4. Speed controller

KR = 10/(100π); T1 = 0.1; T2 = 0.01; T3 = 0.2; Tt = 0.3

.5. Voltage controller

KA = 120; KF = 0.02; TR = 0.01; TA = 0.15; TE = 0.5; TF = 1

X = 0.01; BX = 1.55; KE = AXBXeBXE�0
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