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Abstract

This paper deals with the study of power quality in an isolated system with high wind energy penetration level. An induction wind plant, a
synchronous power plant and a network constitute the analysed system. The work focuses on studying the effect of mechanical power from wind
on load voltage and network frequency fluctuations. A linear model for the complete system is proposed in order to use eigenfrequencies and Bode

plots to carry out this study.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, wind energy has an important impact in electrical
networks, e.g. its growth rate has been continuously increasing
over the last years, and wind power energy represents more than
5% of the Spanish electrical generation [1]. In isolated systems,
the influence of wind energy is especially relevant. The Canary
Islands are an example.

One of the typical problems of induction wind energy con-
verters (WEC) is the variation of their delivered power, whose
main cause is the random behaviour of wind. In addition, peri-
odic fluctuations can appear in electrical power, which are
mainly due to wind shear and tower shadow effect, as shown in
measurements made by the authors [4,6,7] and other researchers
[2,3,5].

In isolated networks with a large number of wind plants the
oscillations mentioned above can be transmitted to the electrical
loads and, thus, power quality is affected. In this paper a linear
model is proposed to analyse the behaviour of these systems.
This study can be carried out using tools such as eigenfrequen-
cies and frequency response. The results are compared to those
when the wind park is connected through a network to an infinite
bus behind a reactance. This means that the network frequency
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is constant, which is equivalent to a power plant with an infinite
inertia constant (H=o00) [8,11].

2. Dynamic model of an induction WEC

The induction generator can be modelled as a voltage source
E, behind the impedance R, +jX, as can be seen in Fig. 1.
This dynamic model is defined by considering balanced oper-
ation and no stator electromagnetic dynamic effects (constant
electromagnetic flux), and is known as the third order induction
machine model [9,10].

The internal voltage E, can be derived from the following
equation [9]:

dE,
dt

. 1 .
= —JossEq = 77 (Eq = J(Xo = Xa)la) ey
0
where wy is the synchronous frequency in rad/s (100 rad/s in
Europe), s the slip, I, the stator current in p.u. and X, X, and
T, are machine parameters in p.u.
The steady-state equation for the stator current is:

Vo — E
I, = - = )

Ry + )Xo
where V, is the external voltage of the induction machine in p.u.,
R, and X, are the parameters of the machine (see Appendix F)
in p.u.
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Fig. 1. Scheme of an induction generator in front of the network.

The electromechanical equation (see Appendix B) can be
written as:

P ds
— Py =2H,— 3
1—s ea a dar 3)
where Pp,, is the WEC mechanical power (P, <0 for genera-
tion) in p.u., H, the inertia constant in s and P, is the electrical
power (Pey <0 for generation) in p.u.

The electrical power in p.u., Peq, is calculated as:

Peq =real { Eq I} 4)

In this paper, the WEC mechanical power Ppq(?) is repre-
sented with two components [11]:

Pmoc(t) = PmaO + APma (5)

where P represents the low frequency component of wind
power, which is obtained from the mean value of the wind,
defined by a Weibull or a Rayleigh distribution [12—-14]. In this
paper the Ppq0 component of mechanical power is assumed to
be constant and APy, is the power fluctuation with a frequency
of about 1-2 Hz [2-4,6,7].

In order to make easier to study the power fluctuations influ-
ence on power quality, they are assumed to such as:

APpo = P sin 0(t) (6)

where Py is the amplitude of mechanical sinusoidal fluctuations
in p.u. and 6(¢) is the mechanical angle of the turbine in rad and
is defined as:

t
9m=%+/a—m+Amwm%%+%ﬂ ™)
fo
and 6 is the initial mechanical angle in rad, so the initial slip
of the induction generator, As equal to s —so and wpr is the
frequency of power fluctuations due to tower shadow effect in
rad/s, which can be expressed as a function of the wind turbine
rotational speed (£2;) by means of the following equation:
3w
wpt =32 = — (8)
rp
where r is the gearbox ratio and p is the number of pole pairs.
In this way, the expression for the power fluctuation can be
written as:

AP = P sin(wpgt + 60p). )
3. Linear dynamic model of an induction wind park

The linear model for the induction machine is based on the
following considerations [11,15]:

e The induction generator has an initial steady-state operating
condition, defined by: Eg, 140, Vo> 505 Pmo-

e Small changes are: AE, As ~ 0, As <50, AEy AE}), ~ 0,
AE, AV! ~ 0 andsin AG~0.

Eq. (1) can be linearized as:
dAE,
Cdr
where

4 . +1 <1+.XO—Xa)
Z=v+jw =jwso + — —_—
< J JwsSo Té JRa+JXa

= —jwsEqo As + 2 AV — 2 AE, (10)

1 Xo—X
7=vV+ju = —,70 2
- Ty Ry +jXa
In the same way, the mechanical Eq. (3) is:

dAs P,
/’lai = AP, + ma0
dr 1 —s9

As — (1 = 50) APeq (11)

where hq = 2Hy (1 — s9)
Finally, using Eqs. (2) and (4), electrical power can be
expressed as:

APy =g AV, + m AV + e AE, + f AE} (12)
where
. EaO
y=8+tm=—_———
- Ry —j X

e = real {"/:‘O _ ELO/EO‘O }
RO( _jXOL

Vi, — Eny/Eao
f =real {J' a0 f"o/ 0 }
Ry —j X

Taking Eqgs. (1)-(3), (11) and (12) into account, and the pre-
vious considerations:

. [2E AE", )
3 | AES| =Ac | AET | +Bay, AV;’; + Bop APo
As As o
(13)
where
—v w wsEY
A, = —w —v —wsEq
—e(l —s9)  —f(1—s0) Prna0
ho ho (1 = s0)ha)
v —w'
Bav, = w' v
—g(1 —s9) —m(l —s0)
he he

1 T
Byp=|0 0 —
aP |: ha:|
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Fig. 2. Scheme of a synchronous generator in front of the network.
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The parameters for Eq. (13) should be obtained by aggregat-
ing the different WEC’s in the wind parks under consideration
[17,18]. However, this task is not the purpose of this paper and
the simple method has been used, consisting of assuming the
wind parks as being constituted by machines with the param-
eters shown in Appendix F. So, the eigenvalues —7.91 and
—4.10 £ 14.68j can be derived from Eq. (13) and their eigen-
frequencies are represented in Fig. 4.

4. Linear dynamic model of a power plant

The aggregated synchronous generation of a power plant
when it is formed by coherent synchronous generators can be
modelled as a Thevenin equivalent voltage source Eg, behind
the transient reactance jXg, as can be seen in Fig. 2 [16].

The electromechanical equation for the plant formed by the
synchronous generators is [10]:

ZHB d(a)B — a)s)

PmB_PeB:_ ws dr (14)
ds (15)
—o0g = wg — W
dr B B s

where Jg is the angle of the internal voltage Eg in rad, wp the
rotational speed of the synchronous machine in rad/s, w the syn-
chronous speed in rad/s, Pmg the mechanical power in the power
plant (Ppg <0 for generation) in p.u., Hg the inertial constant
in s and P.p the real electrical power (Peg <0 for generation) in

p.u.
The electrical power Peg is calculated by:

Peg :real{EB!’é} (16)

where [ is the stator current.
The stator current is:

Vg — E
[p=-—L_=F 17)
iXp
Taking the voltages in the polar form as:
Vg = V4§
LB B=%% (18)

Eg = Egsdg = Eﬁz(sg‘ —8p)
then, taking Eq. (17) into account, Eq. (16) can be written as:

EgVg

H 81‘61 19
X sin &g (19)

Pe[3=—

Consequently, the incremental dynamic model of the power
plant, from an initial steady-state situation (Pmgo — Pego=0;

wpo = ws; 8g0; Epo) and assuming small changes, is:

2Hp dAw
APpp — APeg = —w—fTﬁ (20)
dPugo dPugo 0Pego
AP ~ AE AV, ASE 21
®~ 3Ey P Gy, OB asg’ TP @D

The power can be expressed as:

APep = —pAEg —qAVp —dEgy Adg —d'Vgo A (22)

where

. Vpo sin 5%6(1)
Xp

g = Egp sin 5%6(1)
Xp

rel

Vo cos §
d= B B0

Xp
g —Eg cos 8%%
Xp
Machine equations in matrix form are:
—d
d Awg 0o — Awg
dr | Ego Adg Ego O Ego Adg
p | AVg
A I Vao A(S/B
+ | hp  hg  hg  hp N
0 0 0 0 B
APpg
(23)

where hg = 2Hp /ws.

The system depicted in Eq. (23) has two imaginary eigen-
values whose frequency depends on inertia constant Hg. In
Appendix F, the relationship between nominal power Pgpnom
and inertia constant Hg is shown [16]. Using the parameters
in Appendix F, the evolution of the eigenfrequencies shown in
Fig. 4 can be obtained.

In synchronous generation there are two automatic control
systems: P—w» and Q—V regulator. Their configurations are shown
in Appendix E and their parameters are in Appendix F [16].

5. Linear dynamic model of a power system with a wind
park and a power plant

An induction wind park, a conventional power plant and an
electrical network constitute the complete system (see Fig. 3).
All the parameters of the network are in p.u. quantities with the
base values shown in Appendix F. Transformers are not repre-
sented but they have been included and modelled by means of
their correspondent short-circuit impedances.
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Fig. 3. Scheme of the network.

In order to obtain the complete linear model of the system
shown in Fig. 3, nodal analysis is applied, and the result is:

AVy Yo AE,

AV 0
Y = (24)

AVg Yg AEg

A‘_/y 0
where

Yo +josCoa + Ying —Yiha 0 0
Y = 7¥lhm Ztha + Y(xy 0 7¥uy
o 0 0 Yg + Yy Yy
0 Yoy —Ypy Yy+ Yy + oy
(25)

and
Ve — 1
P jXp

Yo = (Ro +jXo)™!

Yiha = (Rihe +thh0L)_l

So, the relationship between the network and the internal
voltages is:

AV, AE,
AV y 0
=K (26)
AVp AEg
AV, 0
where

I_(i,lz)_/;ll)_/ou i=1,...,4
K= Ki3=Y3Y i=1,...4
K=Y, i=1,...,4, j={24

Using the polar form for the synchronous machine and the
complex form for the induction one, Eq. (26) results in:

AFE
b 27)
Ego Adg

AVE
AV™

AE"

K
AE™ P

{e7ed

AVe K o g Ee (28)
VBo A(Sé — b AEY BB Ego Adg
where
o _[xn-kn
o —
KT K
et _gm
ko= | KB,
| K3 Kz |
et _gm ]
T 31 31
KBO‘ = TVB Km Kt
| 431 31 |
e _gm ]
_ T 33 33
KBB - TVB Km Kt TEB
| £33 33 |

Ty, and Tg, are the transformation matrix for Vg and Eg (see
Appendix C)

5.1. Induction machine

Using nodal Egs. (27) and (28) with Eq. (13), the equation
for the induction machine can now be written as:

AE}, AE],
d . m AE,
o AER | = Ay | AEY | +Bag, AEM
As As @
+B Be | Bpan (29)
aEg EBO A(SB aP mo
where
Boch( = BaVO(ch(x
BocEB = BaVaBaB
Eq. (29) can be written as:
d AE}, AE}, AEg
T AED | = A; AER | + B& Ego Adp (30)
As As A P
where
—V+ Byg, 11 w + By, 12 wsEgy
Al = —-w + BaE(XZl —v+ BOLE(XZZ _wsEfxo
“ 1-— S0 1-— S0 PmaO
- B, _ B, _ -~ med
e - + ByE,31 S . + Buak,32 1 sophe

B/a = [BaES BaP]

The output for this system is formed by the state variables:
AE, AEY and As.

Fig. 4 shows the eigenfrequencies of the system depicted by
Eq. (30) with the parameters in Appendix F.
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Fig. 4. Eigenfrequency values in a system formed by a 35 MVA wind park.
5.2. Synchronous machine

Eq. (28) can be written as:
AVp = Kga11 AE + Kpa12 AER 4 Kpp11 AER
+Kppi2Ego Adp
VBo A(Sé = Kpa21 AE] + Kpa22 AET + Kppa1 AEp
+Kpp22 Epgo Adg

(3D

Using nodal Eq. (31) in Eq. (23), synchronous machine equa-
tions can be written as:

AE,
d Aw Aw AE™
s Brl = E3 Brl B/B : (32)
dr EgoASBe EB()A(SBG AEp
A Pp
AEF,
Aw w AE™
Pl =cy P el e (33)
Ego Adg Epo Adp AEg
A Pmg
where
|0k
B Ego O
(b ks ks
2 ka ks —
B'B= h|3
0O 0 O 0
C - 1 0
B7 1o 1
o _ (0 0 0 0
B~ 1o 0 0 0

and
k= —9Kep12 — d —d' Kpg»
hg
iy — —9Kpar1 — d'Kpa12
2 =
fx — —qKga12 — d' Ko
3 e
jy = P~ gKpp11 —d'Kpg12

hg

Eigenvalues of Eq. (32) with the parameters in Appendix F
are shown in Fig. 4.

6. Linear model for the complete system

The models presented in the previous paragraphs can be con-
nected as shown in Fig. 5, in order to model the complete system.
The behaviour of this system will be studied choosing mechani-
cal power A Py, as input and with the following outputs: voltage
AV, and rotational speed Awg. In this way, the influence of the
wind park on the variations on load voltage and frequency devi-
ation can be studied.

The linearized equations of a system formed by a 150 MVA
power plant and a 35 MVA induction wind park (see Appendix
F) have been simulated with SIMULINK [20]. These results
have been compared with those obtained using the commercial
program SIMPOW [21], where electrical machines are repre-
sented in a d—q frame. There is a good agreement between the
two simulations as can be seen in Fig. 6. In the same way, a
comparison between frequency responses of the linear system
(Bode plot) and the in d—g reference is shown in Fig. 7.

L AE'y
Voltage m
— Regulator |« 2k o
A.B,C,D, | Egoddy
AE'y
AEIH“
AV,
EpoAdp Kvy[—»
AEp
As
AE
B ' AEg Induction AF'
AES, Sl]rc;hr}c:_nous EgoAdy ‘Machine Z
p aIC l.I]EI | Aa B(r.C(»: D, AEWE‘
AE™, AB B”(:B Dﬂ >

3 |
AP,
- mo.

Speed
Regulator
AOJ BU} Cu} I:)(I)

Fig. 5. Block diagram of the complete system.
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Fig. 6. Results from simulations with SIMPOW (dq representation) and linear
model.

Once the linear model has been obtained, the transfer func-
tions AV, (s)/ APy (s) and Awg(s)/APpq(s) can be computed.
For a system formed by a 150 MVA power plant and a 35 MVA
induction wind park (see Appendix F), these functions have 11
poles and the main eigenfrequencies can be seen in Fig. 4.

In order to illustrate the impact of the WEC mechanical power
fluctuations in load voltage AV., the magnitude of the Bode
plot for AV, (s)/ APy (s) between 1 and 2 Hz is shown in Fig. 8.
As can be seen, the amplitude of voltage fluctuations increases
when the nominal power of a power plant decreases. This effect
is greater when compared with a power plant modelled as infinite
bus behind a reactance (Hg = 00).

When a similar study is carried out with the speed trans-
fer function Awg(s)/ APq(s), the results shown in Fig. 9 are
achieved. These values in Bode plot are much lower than
those for AVy(s)/ APnq(s). For example, the maximum value
for AVy(s)/APn(s) is 0.7 and the value corresponding to
Awg($)/ APpqo(s)is 15rad/s/p.u. or 0.048 p.u./p.u. The relation-

0.6 T T
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g_ -+ dg repesentation
c 04 —— ' . 1
= i b
@ 5 o,
o gal B B, d
L "‘-.15 .
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@ wsseenn O Ilinear modlel
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g s
o
£ ",
& &,
@ -10f o B
< | | | | [
Q "‘F‘ ...... ﬁ o4 .

== T
20 i L L

0.5 1 15 2 25 3 35 4
frequency of mechanical wind power fluctuations AP, in Hz

Fig. 7. Frequency response of complete system taking mechanical power Ppq
as input and load voltage V., as output in a system formed by a 150 MVA power
plant and a 35 MVA wind park.
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Fig. 8. Evolution of the Bode plot magnitude for the voltage transfer function
AVy() APy (s).

ship between nominal power of the power plant and the peak
for the fluctuation magnitude shown in Figs. 10 and 11 reflects
more clearly this behaviour.

7. Results

Assuming that voltage variations are much higher than the
speed variations, only the behaviour of the load voltage has been
analysed in this section.

And assuming that the oscillatory power defined in Eq. (9) is
the input for the complete system, the expression for voltage Vy
and speed wg, can be written as:

AVy = Vs sin(wpft + 6p) (34

where V and 6] represent the amplitude and initial phase for
the oscillations in voltage.

nominal power of power
plant P nom in MW

14
— 50MW
=== 59MW

12 = BBMW
— T6MW
== 85MW

10F seee G4MW
— 103MW
= 1T11MW

0 . . : . . . : ] .
1 11 12 13 14 15 16 17 18 19 2
frequency of mechanical wind power fluctuations AP, in Hz

gain of speed transfer function Awg(s) /APnq(s) in rad/s
[o4]

Fig. 9. Evolution of the Bode plot magnitude for the speed transfer function
Awg(s)/ APmq(s).
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Values for the amplitudes and phases depicted above can be
obtained from the transfer functions evaluated at j£2g, so:

AVy(s)

o= (35)
0 APna(9) |,

where considering Eq. (9) A Pno(jor) = PsZ6y

As shown in Fig. 8, the value for voltage and speed oscilla-
tions depends on the synchronous machines nominal powers and
also on the frequency 2 of the mechanical power oscillations.

The results shown in Fig. 10 show that the peak of magnitude
is achieved for values in the neighbourhood of tower shadow
effect (between 1 and 2 Hz), for a system with the parameters
given in Appendix F. As this effect is one of the most impor-
tant perturbations in wind parks, this behaviour can lead to high
flicker values relating load voltage variations. In Fig. 12 the

Py
(&)

-
o
T

[$)]
T

H;; = = peakgain=0
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o

peak gain of speed transfer function Amy(s)/APnq(s)

a
o

Fig. 11. Evolution of the peak magnitude values for the speed transfer function
Awg(8)/ APmq(s).
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Fig. 12. Evolution of the flicker (Pst) related to load voltage variations.

results of flicker computation are shown [22], by assuming a
pessimistic situation where the power oscillation due to tower
shadow has an amplitude of 20% [2,3] with respect to the nom-
inal power of the wind park.

8. Conclusion

In this paper, a linear model for the behaviour of a power
system with high wind energy penetration is presented. Once
the model has been developed it has been used to study the
behaviour of the voltage in the load and the frequency in the
network when the wind park introduces variations on power.

One of the main perturbations associated with a wind park is
given by the tower shadow effect. The oscillation frequency of
the electrical power delivered by the wind park in these condi-
tions has a frequency between 1 and 2 Hz. This paper presents
a method to evaluate the impact (flicker, voltage variations and
frequency deviations) of wind parks on networks under these
conditions. This analysis is more relevant in isolated networks,
as shown in the results.
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Appendix A. Notation of constants and variables

E complex number
E modulus of £
E', E™ real or imaginary part of E
,a matrix or vector
a constant or parameter
ij»a; elements of matrix A or vector a
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Appendix B. Electromechanical equation of induction
machines

The electromechanical equation of an induction machine can
be written as [10]:
Tm — T J dez 36

m—Te= ar (36)

where T, and T, are the mechanical and electromagnetic torque,
respectively, in Nm (T, <0 and T. <0 for generation), J the
inertia moment in N ms? and 2 is the rotor speed in rad/s.

In this equation electrical power (P.) and mechanical power
(Pm) can be included if the following relationships are taken into
account:

Q2=(1— 92 (37)
Py =Tn$2 = Tin(1 — 5)82 (38)
Pe = Te 82 (39)

where £2 and §2; are the rotor and synchronous speeds, respec-
tively. In this way, Eq. (36) can be written as:

P 5 ds
— P = JS2, — 40
1—s ¢ S dt (40)
And using p.u. values:
Po  p oy (41)
1—s T dr

Appendix C. Transformation from complex to polar

In this appendix the transformation between the complex and
polar form is shown. This transformation is applied to the fol-
lowing voltage represented in its complex form:

Ve =V.+jV = Vg(cos 8¢ + ] sin 5) (42)
By applying the Taylor equation, Eq. (42) can be written as:

% 1%
~—2 AV 4+ =2

AV, ~
Vs 08

Ad, (43)
where AV, =V, — V. In this way, the complex values can
be given as a function of polar components:
AV, = cos 850 AVg — sin 8,0 Vg0 Ade

+j(sin g0 A Vg + cos 8.0 Ve0 Ade) (44)

where Vo = Ve04£0:0

The above expression can be written in matrix form:
AV}
AVE

AVg

45
Veo Abg 45)

Ve

where transformation matrix Ty, is Hermitian (T‘_,s1 = T?,E) and
can be written as:

cos g0
Ty, =| .
sin g

—sin 8g0 46)

Cos g0

Appendix D. Network voltages

The relationship between the internal voltages (E and Epg)
and the network voltage V., is:

AV, [ AET AEg
Vg sy | =K [ apm | TE | £ a5
Y0 20y | 2 Fa B0 208
[ AEL
AE™
“Kv | g (47)
_EB()A(SB
where
e
T 41 41
Ky =Ty | )
_K41 Ky ]
S
KVB:TF\F/ 43 43 s,
T Ky Kl

Ky, = [Kva|KvB]

v

Appendix E. P-F and Q-V regulators for the
synchronous machines

In this paper, a steam turbine and governor model have been
used to represent the speed regulator of synchronous machines
[19]. A block diagram is shown in Fig. 13, and its equation can
be written as:

A Pp A Pp
T AXxy =A, | Ax; + B, Awg (48)
Ax> Axo

where Axj, Axy and Axj are state variables

[0 1 0
A,=| 0 0 1
| —a3 —ax —ai
[ 0
B, = by
| b3 —aiby

4 hT: +NThT, + T5T;
‘l:

T3 T;
. 1+sT, | e | 1
Aog—Nph 2 1+5T, '7( ) > EEE :31’..‘.5
AOper=0

Fig. 13. Block diagram of speed controller.
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AV 1 Ka 1 AEg
1 +sTx 1 +sTa sTg
SK}-‘
1 +sTg
Fig. 14. Block diagram of voltage controller.
nh+1+T;
a) = —
VA
1
a3 =
VLYY
—KrT>
by =
IAVEYD:
—-K
by=——=
ThWT3T;

In order to model the voltage regulator (see Fig. 14), an IEEE
type DC1 exciter has been used [16], and its equation can be
written:

_AEB AEg
d | A A
S oA T 4B A, (49)
dr | Ay, Ay
L Ay | Ay3
[AEg] 0 1 0 07 [AE
d | Ay 0 0 1 0 Ay
d | Ay | | 0 0 0 1 Ay,
L Ays —ay —dy —dy —dy] [ Ays
0
0
+ 1, | Ave (50)
3
v,
where
Ka Tg
Ky=2"2, T1=--
AT K E= K

;o TATFTIC: + TATRTI% + TATrIR + TFTRTIC:

a, =

! TATLTr TR
d = TATE+TATr+TE T+ TATR+TE TR+ Tr TR+ Kr K, TR
2T TAT}TeTR
A= Ta + Ty + Tr + Tr + KgK,

L=

TATLTeTR

’ Kg

4= T TR,
AlgIrIR

[

3T TATETR

by = K

Ta Té TRTF — a/l bé

Using Eq. (31) state equations can be written as:

AEp AEg AR
d|A A “
SO Ay | T 4By | aED 51)
dr | Ay, Ayr
Ego Adp
Ay3 Ay3

where Ay, Ay, and Ays are state variables

0 1 0 0
0 0 1 0
Ay = ,
b3Kgp11 0 0 1
[ —a) +biKppii —a3 —ay —d
i 0 0 0
0 0 0
BV = / / /
b3Kga11  b3Kpa1z  b5Kpai2
| by Kpa11 Dy Kpa12 by Kppi2

Appendix F. System data
FE1. Network parameters

e Base parameters: Spase = 100 MVA; fryase =50Hz; Upase =
660 V.

e Network impedances (see Fig. 3): Zyy=0.10+0.30jp.u.;
Z3y=0.03+0.15jp.u.; Zy=1p.u.

F.2. Induction machine parameters

The wind park is formed by 86 fixed speed wind energy con-
verters equipped with induction generators. The parameters for
each induction machine are:

Nominal voltage: Vi nom =660V

Nominal apparent power: Sq nom =359 kVA
Inertia constant: Hy, =3.025s

Stator resistance: Ry =0.00571 p.u.

Stator reactance: X5 =0.18781 p.u.

Rotor resistance: R =0.00612 p.u.

Rotor reactance: X; =0.06390 p.u.
Magnetizing reactance: Xy, =2.78 p.u.

and
, X+ Xnm
0 ws Ry
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Fig. 15. Inertia constant Hg.

Table 1
Coefficients for the calculation of Hg
Thermal Hydraulic
Low pressure High pressure
ap —7.2739 x 108 —3.2740 x 108 —4.6448 x 100
a 8.4003 x 10° 6.3610 x 10° 3.5120 x 10*
as —3.2605 x 10? —4.1484 x 10? 2.8182 x 102
as 5.9833 12.971 1.5706
Xo=Xs+ Xm
_ Xs + Xer
“ Xr + Xm

The value for the shunt capacitor for the reactive compensa-
tion of induction machine is obtained from the following equality
of reactances: 1/wsCq = X

F.3. Synchronous machine parameters

The transient reactance Xg is 0.3 p.u.
Values for the constant of inertia Hg in s (see Fig. 15) are
obtained from Ref. [16]:

Hp = a; ngnom + ang,mm + as Pé,nom +au (52)

where Pg nom is the nominal power in MW for the generation
system and ay, az, az and a4 are coefficients defined in Table 1.

F4. Speed controller
Kr=10/(1007); T1 =0.1; T, =0.01; T3 =0.2; T;=0.3
E5. Voltage controller
K4 =120; Kr=0.02; TR =0.01; T4 =0.15; Tg=0.5; Tr=1

Ay = 0.01; By = 1.55; Kp = AxByxeBxEpo
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