IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 17, NO. 3, AUGUST 2002 681

A Linear Dynamic Model for Asynchronous Wind
Turbines With Mechanical Fluctuations

José CidrdsMember, IEEEand Andrés Elias Feijoo

Abstract—in this paper, a specific linear dynamic model for an In this paper, a linear dynamic model is proposed. This model
asynchronous machine is presented. This model is based on thejs based on the dynamic linear equations [5], [8] considering
balanced dynamic model of the asynchronous machine and it is the machine at the operating point (defined by the steady-state

developed for asynchronous wind turbines when the mechanical del d si idal fluctuati f hanical Th
power (wind power) has sinusoidal fluctuations. The dynamic and model) and sinusoidal fluctuations of mechanical power. The

the proposed linear models for real and reactive powers and voltage resulting mOdeL. after applying a Fourier transform, results in
fluctuations analysis are considered and compared. a complex matrix equation such asX = M Ap, where the

Index Terms—Asynchronous rotating machine, power quality, _Complex 3x 1 matrix AX r_epresents sinusoidal variations of
wind energy. internal voltages and slipv is a constant complex:8 3 matrix
andAb is a 3x 1 matrix with one nonzero component which
represents the mechanical power sinusoidal fluctuation. Using
| INTRODUCTION the proposed linear model, other electrical variables (real and
IND energy has become an increasing source of elggactive power and output voltage) of the asynchronous wind
trical energy production in recent years. For this reasoitirbine are defined. A comparative study of the dynamic and
it is necessary to study the possible impact a wind turbine wilie proposed linear models are shown.
produce on the power network where it is connected. In orderThe proposed linear model of an asynchronous wind turbine
to investigate the effects, suitable wind energy models musin be easily implemented in power system analysis.
be used.

In general, the effects of asynchronous wind turbines orl. M ODEL OF MECHANICAL POWER IN THE WIND TURBINE
power systems can be cla_ssified in two groups: 1) steady-stgtq-he model of mechanical power can be expressed by the fol-
security and 2) power quality. The goal of steady-state securfg(mng terms:
is to seek network power stability conditions when the wind

power is injected, whereas, power quality analysis studies the Po(t) = Pn.o+ AP, (1)
effects of wind power fluctuations in the form and level of
electrical waves (harmonics, fluctuations, etc.). whereP,, ¢ is the 10-min mean value of the power of the wind

In order to assess the impact of wind energy on the steadyrbine, obtained from the wind, which is defined by a Weibull
state security of power networks, the methodology is based @ha Rayleigh distribution [2], [9].
load flow analysis, and asynchronous wind turbines can be mod-A P, is the power caused by tower shadow, wind shear, and
eled byPQ or RX (impedance) nodal elements where the mgotational sampling. The wind power fluctuations are considered
chanical power (produced by the wind) is considered fromta have a value proportional #,, . The frequency oA P, is
probabilistic point of view [1], [2]. When the study of powerdefined by the speed of the blades, and this is a function of syn-
quality is required, in general, the power network from the winehronous speed, and slip. Measurements taken by the authors
turbine is modeled by a Thevenin equivalent circuit, and tH&ve shown this to be an accurate way to model tower shadow
asynchronous generator can be presented B@)anodel or a effect, as can be seenin Fig. 1(a) and (b) which represent, respec-
dynamic one, which is a third-order induction machine. tively, the electrical power harmonic spectrum and real/reactive

The PQ model is commonly used for analysis of stationarpowers ratio of a wind turbine (for the sake of simplicity, data
voltage variations (flicker) [3]-[4], and its main advantage is itgre given in Appendix I1). At the moment of the measurements,
simplicity. the wind turbine was injecting 102 kW to the electrical power

The third-order dynamic model [5] is used by several authoretwork. In Fig. 1(a), the fundamental is excluded.
when connection processes or exhaustive analyses are needédother mechanical power ter#, can be considered. This
[5]-[7]. The advantage of the dynamic model is the accuracy isfthe power from wind turbulence defined by a Normal distri-
results, but its complexity is not appropriate for large studiesbution, which is similar to a stochastic noise. This term is not

taken into account in this paper.

. ) . _In this paper, the following hypotheses are considered.
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Fig. 1. (a) Power harmonic spectrum. (b) Real/reactive power ratios. .
g @ P () P whereU is the stator voltage.

. : : . . The electromechanical equation is
whereP; is the amplitude of the mechanical sinusoidal fluctua- a

tions andi(t) is the mechanical angle of the turbine, definedby  p
means of the following equations: -

d d
L P = —2H—‘z = P, — P.=2H(1—s)= (6)

1-s d ' dt
t
150 = 2D L g — gy + / (1—s)Q,dt (3) where
dt to P,, mechanical powerk,, < 0 for generation);
where H inertia constant;
s slip of the induction generator; P.  real power.

Q, =3-20w,/(rp) speed corresponding to the tower The electrical powef is calculated by
shadow effect in rad/s, whebes, / (rp)

is the wind turbine synchronous speed:; P.=P/(1—-s)=Re{E'Lx}. )
Ws synchronous speed in rad/s of the in-

duction generator¢r50 in Europe); In [6], more general expressions for (4)—(7) are presented,
r gear box ratio, which is in this casewhere the mechanical power is defined by (1) and (2), where it

1:44.38; is shown that stator currents of an asynchronous generator can
p number of poles, four in this case. be expressed by Fourier series, and wind turbine and power net-

work interaction is analyzed using an iterative process. As given
IIl. 1 NDUCTION GENERATORMODELS in Appendix | of this paper, simplified expressions of general

equations in [6] are shown, when the sinusoidal amplitfde

(modulation wave) and the sinusoidal oscillation of electrical
The induction generator can be modeled as a Thevenin equigiriablesw (carried wave) fulfill 2 < « as happens in the

alent voltage sourc&’ behind the impedanck; + j X', as can wind turbine. Consequently, (4)—(7) can be directly calculated

be seen in Fig. 2 [5], where it is represented in front of a nakithout needing Fourier decomposition and Bessel functions.

work and a compensator bank. This dynamic model is defined

by considering balanced work and neglecting the electromag)- Dynamic Simulation of the Wind Turbine With Mechanical

netic dynamic effects of the stator, and it is known as third-ordgfuctuations

induction machine model.

The value of £/ can be calculated by integrating theD

A. Dynamic Model

When a wind turbine, connected to a power system modeled

following: y a Thevenin circuit, such as in Fig. 3, has mechanical fluc-
g tuationsAP,,,, the electrical variableg’, I ,, P., Q. are also
dE’ . . fluctuating.
= = wssE = (B = j(Xo = X)L,)  (4)

The dynamic asynchronous generator behavior with mechan-
A , ' ical power fluctuations depends on several input variables, such
whereTg, X’ and.X, are the following constants: as amplitude of the mechanical fluctuatify, frequency of the
X,. .+ X X. X mechanical fluctuation§, short-circuit powerS.., and X/R
! T m _ ! T m .
o= 27 f.RR Xo=Xp+ X X=X, 4 X, + X, ratioofS..

r
0
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in;uo'15
01 considering a circuit such as that in Fig. 3, (4) can be expressed
0.05 as
0 d (B + AE)
0053 1 -ol.s -o".e -o“.4 -ol.2 0 ot
1:“ np.u = (Ei) + AE,) (ij(SO + AS) + E) + EIQ eq (8)
® 5w (37200 MYA XUR=(1, 2. 10 where

7/:i j(XO_X/)
T Ty R +jX'+Z,,

" Y/
C. PQ Model 1 <1+ J(Xo - X') )

2= .
The P model of the asynchronous generator is presented Ty R, +jX'+ 2,

in [1]-[4]. This model defines the asynchronous generator as gAssuming small changes [§1E’As = 0, (8) can be written
power source where the real powey, is obtained by measure- g5
ments or practical considerations and the reactive péyyglis d(AE,)
calculated by the expressio;,; = go + g1 P + g2 P2, where T —aAE, + (wsso + B)AE, + wsEl,gAs
90, g1 and g, are constants, that depend on the type of gener-
ator. This model is very easy to implement and practical but is d(AEn,)
not accurate. dt
Fig. 4 shows variableB,, andQ,,. for the asynchronous gen-where
erator of Appendix Il in several steady-state situations defined A - ;. ;LA
by: P, = {0.1,0.2, ..., 1,1}, S.. = {3, 7, 20, a0} MVA, Lo =Frotibmo AE =AE. +jAE,
and X/R = {1, 2, ..., 10}. In Fig. 4, the power values for iy J(Xo— X"
S.c = oo are represented by a solid line, and the other cases atif=z= fﬂ < + m> )
are represented as solid circles. The results of Fig. 4 show that . S
the P model for steady-state situations must be defined for %The electrlcall pov/\iePe can be calculated, considering small
specific short-circuit impedancg,, andF,,; = P,,,. changes [BRE'AE™ ~ 0 as
Fig. 5 shows the variableB,; and@,,; for the asynchronous P. o+ AP. =Re {E’f;} ~ P. o+ c.AE. +d.AE!, (10)
generator of Appendix Il under several dynamic situations [si-
nusoidal fluctuations of mechanical power in (2)] defined byvhere

Fig. 4. VariablesP,, and(,.; under several steady-state situations.

=—(wsso + B)AE,. — aAE,, —w,E. As (9)

Py, = {04, 06,08, 1.0}, P, = 0.1P,, Sec = 7 MVA, and ce=—G+Re{l,,} de=-B+Im{I,,}
X/R = 5. In Fig. 5, the steady-state power values are repre- )

sented by the decreasing curve and the fluctuations as circularG 4B = Ly

curves. The results of Fig. 5 show that for sinusoidal mechan- Ry, —j X/ +qu'

ical power situations the power fluctuations?,,, and AP,
have different moduli, different angles, and their ratio is diffh
ferent from that obtained in steady-state situations.

For the mechanical power fluctuatiodsP,,, defined in (2),
e angled(t) in (3) can be expressed as

t t
6(t) =46 1—35)Qdt =146 1— 59 — As)Qdt
IV. PROPOSEDLINEAR DYNAMIC MODEL (£) =f +/0 (1-5) 0 +/0 (1 =30 2
If the induction generator is assumed to be in an initial steady-

t
state situation, defined by the valug$,, so, I, Po, U, and = to + ot — /0 Asllydt = 0o + ot + AP
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where{2y = (1 — 59)§2 andd, is an initial value for the angle. 0.05
If we assuméy = 0 andsin(Af) = Af = 0, the result is 0.04
0.03
AP, (t) = P, sin(Qqt). (11) 0.02
0.01
Taking (6) and (9)—(11) into account, the asynchronous machine e, ©
equations can be expressed as follows: in Pty o4
y -0.02
AE —« wsso+ 5 wsElLg 003
™ .
d AE | = | —wsso =8 - —ws Bl .0.04
dt m .
—Ce —de -0.05 i i -
As 0 003 -002 -0.01 0 001 002 003
h h .
AE, inp.u.
AE!, 0
) 0 Fig. 6. Comparative results of internal voltage fluctuations between
AEm + 1 AP, (12) third-order dynamic model and proposed mo#g] = 0.8521 4 ;0.2489.
A —
s h
whereh = 2H(1 — so). , N G — R S -

The previous equations system can be represented by the
linear first-order differential equation

&= Az +bAP.,. (13) \

,,,,,,,,,,,,

____________________________

In order to obtain the oscillation modes of the system, we can
examine the eigenvalues of the characteristic matfixor the , | , ’
roots of the characteristic equation, by solvikg[\I— A] = 0, B B A oo
wherel is the unitary matrix. : ; : ;

-0.08 i : : i :
As an example, for the asynchronous generator of Ap- 02 015 01 -005 A°P in°'°us §roos 02
pendix ll, with P, = 0.1 p.u., P, = 1pu,S. = 7 m P
MVA, and X/R = 5, the following roots are obtained:Frig. 7. Comparative results of power fluctuations between third-order
(—3.6604+12.00405), (—3.6604 — 12.0040;), and(—5.5867). dynamic model and proposed modBl: o = —0.992 p.U, Quio =

On the other hand, the rotational speed of mechanical power &6 P-U:

AP! is Qp = 10.6916 rad/s, which is near to the frequency

oscillations of 12.0040. Therefore, the electrical variables of the For this example, the steady-state results are

generator will show higher amplitude fluctuations for rotational

speed?y, and consequently the steady-state mode{3,(RZX) AE] ,.=0.0032 AE], ,=-00227 As,=0.0023

are not suitable when mechanical power fluctuations exist.  Ap7 —_0.0216 AE'  =0.0429 As,,=—0.0002.
In the steady-state situation of (13), from sinusoidal fluctua- e e

tions of AP/ , the Fourier transform can be applied, giving In Figs. 6 and 7, the numerical comparative results obtained
for the example are shown, between the third-order dynamic
X(w) = (jwl — A)YTTDAP, (w). (14) model and the proposed linear dynamic model.
In binomial notation, (14) can be expressed as V. PROPOSEDLINEAR DYNAMIC MODEL APPLIED
TO A WIND PARK
AE, . +jAE] , The proposed linear dynamic model can be applied to a wind
AE!  +AE | = (jQl — A)TP,. (15) park consisting of several asynchronous generators. In this case
’ . ’ the variation of stator current, for machine numbgrt fs ex-
As, + jAs,
pressed as
From (15), the sinusoidal fluctuations of variables can be de- y
fined ar = 2Uim A8, (17)
e ST Ryt
AE] = AE,  sin(Qot) + AE] ,, cos(Qot) whereAU , is the nodal voltage defined by nodal analysis of the
AE,, = AE,, ,sin(Qt) + AE,, ,, cos(Qot) circuit in Fig. 8

As = As, sin(Qot) + As,y, cos(Qot). (16) AU = KAE'. (18)
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Fig. 8. Dynamic model of wind park.

Applying (4), (6), (11), and (17) to the system in Fig. 6, the

result is a matrix expression such as

rey ] [Anr o Az o At 7 ThT
d
@ | = At Aii - Aun z; |+ b
L En _An,l An,i . An nJ L En 'bn'
(19)
where

x; 3 x 1 vector similar to vectok in (12);

A;; 3 x 3 matrix similar to matrixA in (12), with param-

eters of maching;

A; x 3 x 3 matrix that represents the relationship between

variables of machinesand#;
b; 3 x 1 vector similar to vectobA P, in (12).

ik id = ————
C7k+J H Rs,i_in/

hi = 2Hz(1 - 81‘70)

K, ;, K, , are elements of matrik.

The steady-state situation of (19), for sinusoidal fluctuations
of AP/, can be obtained by superposition. Therefore, for

AFE!, AFE! andAs, the following general expression can be
written

2(t) =Y X, isin(Qo, i) + Xom, i cos(Q,it).

i=1

(20)

VI. CONCLUSIONS

In this paper, a linear dynamic model for an asynchronous
wind turbine with mechanical sinusoidal fluctuation was devel-
oped. This proposed linear model presents good accuracy com-
pared to the dynamic model. The proposed model has the fol-
lowing advantages:

1) it has low complexity;

2) it permits modal analysis, direct solution of differential
equations, and easy implementation in several conven-
tional tools for power system analysis (load flow analysis
and power system stability).

APPENDIX |
ANALYSIS OF LINEAR CIRCUITS. ELECTRICAL VARIABLES
WITH AMPLITUDE MODULATION

The values contained in the above-mentioned matrices are as

follows:
—QG g WsS0,4 +/3777 wSE;nO,i
A= | Twss0,i = Bii Qi _wsE:wo,v‘,
1,0 —
—Ci,i —d;
G S 2 0
hi hi
o Ry 0
i, k 1, k
Ai k= /3;7k O/i,k 0
—Cik Tk
: — 0
h; h;
vt i = (14 10 = XD (L~ K )
v v Té,z Rs,i +JX;

of T IBL R =

Ci, i = Re{l5707i} +Gi,i
di,i =Im {ls7077;} +Bi,i
E;o (K

Fi S

R, —jX!

Gii+iBii=

i(t) R L i(t) = 1(t) sin(wt)
T = V2I(1+ msin(Qt + ¢)) sin(wt)
u(t)

(t) can be expressed by

io(t) = V21 sin(wt)

21
i(t) = \/_2“1 cos ((w — Q)t — @)
21
iy (t) = \/_2 2 cos ((w+ Dt + )
or, in complex expressions
1= I, +j-[rn
IO,T =1 IO,rn, =0
Im Im
I_.==—"sin(¢) I_ , =— cos(p)
’ 2 ’ 2
I I
It = —% sin(¢p) Iy ; cos(¢).
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Time domain Phasor R+JX  R+jX I, ! Za I
Lo = T & é
i(®) =1(t)+sin(@+ 1) Transform | 1 _yp wap  Ri(15) (X u| T = v |
P i P, So ' m - B T i Qo @
where: m : H
w>>Q I =0 : |
I(t)=V2 +To (1+ mesin(Qe t + §)) ] ;
Rifi¥q Power Network
V°q
Calculation
Fig. 10. RX model of the asynchronous machine in the network.
W)= V() + si(@+ t+7,)
where: Transform | U =Rel; =L @vly ) < w, like a circuit of only one frequency and electrical
U= R +(Lew)? +I(t) s | G =Rel, + Lo, variable with amplitude variation in the time.
Lea
Tt R
APPENDIX |
Fig. 9. Time domain and phasor analyses. WIND TURBINE DATA
) _ ) ) Base voltage = 660 V.
u(t) in complex expressions can be seen in the following equaase power — 350 kvar.
tions @ > Q). X, rotor reactance 0.0639 p.u.
X, stator reactance 0.187 81 p.u.

UO, m — RIO, m+ LWIO, r

R, rotor resistance 0.006 12 p.u.
U_,=RI_,—Llw—-I_,,~RIl_,—Luwl_,, R, stator resistance 0.00571 p.u.

X magnetization reactance 2.78 p.u.
U_ym =RI_ y+ L(w -1~ Rl + Lol , c capacitance(’ = 1.1475x 10-3 p.u.
U =Ry, — Lw+ Q)4 o~ RL, , — Lol ,, 15 stator current.

I, rotor current.
Up o =Rl oy + L{w+ Q)14 =~ RIL 4+ Ll U output voltage.

o _ o H = 3.025 s.
andu(t) in a time domain expression is w, — 1007 rad/s.
. Vin = 1 p.u. the network Thevenin equivalent
u(t) = Uy, sin(wt) + Up, 1, cos(wt) voltage.
+ U_ psin((w — )t) + U_ , cos({w — Q)t)
APPENDIX Il

+ Uy, psin((w + Q)1) + Uy cos((w + 1) OPERATING POINT OF AN ASYNCHRONOUSWIND TURBINE

or ] The initial state of an asynchronous wind turbine can be de-
u(t) = Uo sin(wt +70) + U cos((w — )t — ) fined by its RX model, shown in Fig. 10.
+ Uy cos((w + Q)t — 74) The mechanical power and the rotor current are defined by
where Por o =, 0)QR,,(l — 50)
m, r, o
Uy = \/(Uo,0)2 + (Vo m)? = VEZ+ (Lw)2 1 2
L.o= i .
Upm Lw ’ R, (1—s4) 2
o = = 2 2 (g 70)
U =U, = \/(Uf,r)Q F(U_ )2 =R+ (Lw)? Im By replacing/,. o in the F,, o equation, the result is the
2 second-order equation
T—=¢—" T+ = -0 — .
2 2 2 2 VG%IRT
Thereforeu(t) can be expressed by so | Xoy + Re, — 2R R + Ry + Fz
m,0

w(t) ~ ( R+ (Lw)? ) I(t) sin(wt + o). . V2R i
+350 2Requ — 2R7 - P— + Rr =0.
The summary of the last analysis can be seen in Fig. 9, ™, 0
which shows that the analysis of a linear circuit with amplitude

modulation variables of frequendy(©2? = 2#[") and carried

frequency f(w = 27 f), can be solved in steady-state when REFERENCES
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