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A third order model for the doubly-fed induction machine
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Abstract

Induction generators are generally simulated by means of a well-known model described by Brereton et al. [1], based on the
induction motor equations derived by Stanley [2]. In this model the possibility of opening the rotor circuit in order to inject a
voltage source is not taken into account, although there are other models where it is dealt with [3]. This paper presents an
alternative way of obtaining the mentioned model and introduces the possibility of modeling voltage sources in the rotor circuit,
which can be very useful when simulating some generating schemes, such as variable speed asynchronous wind turbines. © 2000
Elsevier Science S.A. All rights reserved.

Keywords: Induction machine models; Stator; Rotor

www.elsevier.com/locate/epsr

1. Introduction

Induction generators are the most commonly used
electric generators in industry, and they are particularly
common in some renewable energy applications such as
wind turbines (WTs). Several models have been pro-
posed to simulate them. The model proposed by Brere-
ton et al. is of great use when induction generators
must be dynamically simulated. This model is a very
valid one when the machine works with its rotor short-
circuited, that is, the rotor voltage having a value of 0.
The trend for future years seems to be the use of
variable-speed WTs, in order to achieve an optimiza-
tion of the generated power profiles. Several solutions
have been proposed, such as the use of synchronous
generators linked to the electrical network through
electronic devices, and doubly-fed induction generators,
which this paper is concerned with. The simulation of
doubly-fed induction generators has been dealt with in
many papers, and generally involves handling a set of
differential equations related to the rotor and stator
currents, fluxes and voltages. The purpose of this paper
is to obtain a set of more simplified equations than
those generally used.

2. The third order models of the induction machine

First, the matrices ks and kr [4,5] will be assumed,
which allows one to formulate a change of variables
transforming them from the three-phase variables sys-
tem to an arbitrary reference frame. In this case the
new reference frame is rotating at synchronous speed.
Both matrices can be seen in Appendix A.

The following notation will be employed:
� Ir123 is a vector whose components are the per phase

rotor currents (I r123
T = (Ir1Ir2Ir3)), and Irqd0 (I rqd0

T =
(IrqIrdIr0)) is a vector whose components are the rotor
currents seen from the dq0 axes. The superindex T is
used for notating transpose matrices.

� Isabc and Isqd0 are the stator currents in both reference
frames.

� Vr123 and Vrqd0 are the rotor voltages.
� Vsabc and Vsqd0 are the stator voltages.
� 8r123 and 8rqd0 are the rotor fluxes.
� 8sabc and 8sqd0 are the stator fluxes.

The following equations express the relationship be-
tween both reference frames:

Vrqd0=krVr123 [ Vr123=k r
−1Vrqd0 (1a)

Vsqd0=ksVsabc [ Vsabc=k s
−1Vsqd0 (1b)

Irqd0=krIr123 [ Ir123=k r
−1Irqd0 (1c)

Isqd0=ksIsabc [ Isabc=k s
−1Isqd0 (1d)
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8rqd0=kr8r123 [ 8r123=k r
−18rqd0 (1e)

8sqd0=ks8sabc [ 8sabc=k s
−18sqd0 (1f )

where the matrices kr and ks are given in Appendix A,
where both reference frames can also be seen.

In order to obtain the model, the following equa-
tions, valid for the rotor and stator electrical circuits,
must be taken into account:

�Vr123

Vsabc

�
=
�r 0

0 R
� �Ir123

Isabc

�
+

d
dt

�8r123

8sabc

�
(2)

where

r=

Á
Ã
Ã
Ã
Ä

RR 0 0
0 RR 0
0 0 RR

Â
Ã
Ã
Ã
Å

and R=

Á
Ã
Ã
Ã
Ä

Rs 0 0
0 Rs 0
0 0 Rs

Â
Ã
Ã
Ã
Å

,

RR is the rotor resistance and Rs the stator resistance.
The machine is assumed to be balanced. Taking this
assumption into account, the component ‘0’ can be
neglected. So, from now on only the ‘d ’ and ‘q ’ compo-
nents are employed.

Changing the reference frame by means of the
matrices

�kr 0
0 ks

�
and

�kr 0
0 ks

�−1

,

the following is obtained:

�Vrqd

Vsqd

�
=
�r 0

0 R
��Irqd

Isqd

�
+
�kr 0

0 ks

� d
dt

��k r
−1 0
0 k s

−1

��8rqd

8sqd

��
(3)

2.1. Model for the induction machine with
short-circuited rotor

In the case of an induction generator with short-cir-
cuited rotor, which is a common solution in constant
speed WTs , the previous equations become the follow-
ing, by neglecting the stator transients d8sqd/dt=0:

� 0
Vsqd

�
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�r 0

0 R
��Irqd

Isqd

�

+
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Ã
Ã
Ã
Ä

kr

dk r
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dt
0

0 ks

dk s
−1

dt
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Ã
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Ã
Å

�8rqd

8sqd

�
+
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Ã
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d8rqd

dt
0

Â
Ã
Ã
Ã
Å

(4)

The rotor and stator fluxes can be written as func-
tions of their currents, as follows:

�8rqd

8sqd

�
=
�Lrr Lrs

Lrs Lss

��Irqd

Isqd

�
(5)

where:

Lrr=
�lrr 0

0 lrr

�
(6a)

Lss=
�lss 0

0 lss

�
(6b)

Lrs=
�lrs 0

0 lrs

�
(6c)

and:
� lrr= l2+ lrs, and l2 is the leakage inductance in a

phase of the rotor.
� lss= l1+ lrs, and l1 is the stator leakage inductance.
� lrs is the magnetizing inductance.

From Eq. (5) the following expression for the rotor
currents can be obtained:

Irqd=L rr
−1(8rqd−LrsIsqd) (7)

Now the rotor short-circuit constant is defined as
T %0= lrr/r. So from Eq. (4) the following equation can
be obtained:

d8rqd

dt
= −kr

dk r
−1

dt
8rqd−

1
T %0

(8rqd−LrsIsqd) (8)

On the other hand, from Eqs. (5) and (7) the stator
flux can also be written as:

8sqd=LrsIrqd+LssIsqd

=LrsL rr
−18rqd+ (Lss−LrsL rr

−1Lrs)Isqd (9)

and also from Eqs. (4) and (9) the next equation for the
stator voltage is valid:

Vsqd=RIsqd

+ks

dk s
−1

dt
(LrsL rr

−18rqd+ (Lss−LrsL rr
−1Lrs)Isqd)

(10)
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For the sake of simplicity the following variables and
constants are defined, 8%rqd=LrsL rr

−18rqd, L %=Lss−
LrsL rr

−1Lrs and L=Lrs With regard to this and to Eq.
(8) the following equations can be written:

d
dt
�8 ’rq

8 ’rd

�
= −

� 0 −svs

svs 0
��8 %rq

8 %rd

�
−

1
T %0

��8 ’rq

8 ’rd

�
−
�l− l % 0

0 l− l %
��Isq

Isd

��
(11)

And with the same variables and taking Eq. (10) into
account:

�Vsq

Vsd

�
−
� 0 −vs

vs 0
��8 %rq

8 %rd

�
=
�R 0

0 R
��Isq

Isd

�
(12)

where the values of l and l % are derived in Appendix B
and the expression of slip has been taken into account
(s=vs−V/vs).

Now, applying the next change of variables:

E %qd=
� 0 −vs

vs 0
�

8 %rqd (13)

the equations can be finally expressed as:

d
dt
�E %q

E %d

�
= −

� 0 −svs

svs 0
��E %q

E %d

�
−

1
T %0

��E %q
E %d

�
−
� 0 − (X−X %)

X−X % 0
��Isq

Isd

��
(14)

�Vsq

Vsd

�
−
�E %q

E %d

�
=
�R 0

0 R
��Isq

Isd

�
+
� 0 −X %

X % 0
��Isq

Isd

�
(15)

Now, defining the following complex numbers: V( s=
Vsq+ jVsd, E( %=E %q+ jE %d and I( s=Isq+ jIsd, the equa-
tions describing the model are:

dE( %
dt

= − jsvsE( %−
1

T %0
(E( %− j(X−X %)I( s) (16a)

V( s−E( %= (Rs+ jX %)I( s (16b)

These equations are the same as those obtained by
Brereton et al. [1], and are generally accepted and
widely used for transient stability studies, where induc-
tion machines are present. The representation of the
machine as an electrical circuit can be seen in Fig. 1.
2.2. The proposed model for the doubly-fed induction
machine

The case of the doubly-fed induction machine is
similar to the previous one, with the difference that in
Eq. (4), the rotor voltage is different from 0. The same
assumption is made, which means that the stator tran-
sients can be neglected. The following is valid when
assuming waves of the fundamental frequency only. If
this assumption were not made, the derivation of the
model would be more complex, due to the difficulty of
dealing with harmonic currents when dynamic pro-
cesses are being analyzed. With regard to this, it can be
said that the rotor current harmonics, when reflected to
the stator, induce distortion harmonic currents in the
stator windings. These currents have relatively low
magnitudes, and are not so serious if the rotor is
connected to a high-frequency PWM converter. This
issue is discussed in [6].

�Vrqd

Vsqd

�
=
�r 0

0 R
��Irqd
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0
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dt
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�8rqd

8sqd

�
+
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d8rqd

dt
0

Â
Ã
Ã
Ã
Å

(17)

In this case, by performing the following change of
variables:

V %rqd=LrsL rr
−1Vrqd (18)

from Eq. (4) the rotor flux equations become:

d
dt
�8 %rq

8 %rd

�
=
�V %rq

V %rd

�
−
� 0 −svs

svs 0
��8 %rq

8 %rd

�
−

1
T %0

��8 %rq

8 %rd

�
−
�l− l % 0

0 l− l %
��Isq

Isd

��
(19)

Fig. 1. Induction machine dynamic model.
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Fig. 2. Doubly-fed induction machine steady-state model.

which coincides with V( r=Vrq+ jVrd.
Also by doing dE( %/dt=0, the expression of the

voltage source E( % in steady-state can be obtained and
expressed as follows:

E( %= Xm

s(X2+Xm)
(V( %r−RRI( r) (24)

which, obviously, in the case that the machine is not
doubly-fed, can be written as:

E( %= −
Xm

s(X2+Xm)
RRI( r (25)

3. Electromechanical equations and rotor currents

The mechanical power, Pm, electrical power, PE, and
slip, s, are related by means of the electromechanical
[7]:

Pm

1−s
−PE= −2H

ds
dt

(26)

where H is the inertia constant, proportional to the
moment of inertia (J), and defined as the relationship
between the energy of the machine at synchronous
speed and its rated power.

The term PE can be calculated as a function of E( % and
I( s as follows:

PE= −Re{E( %I( s*} (27)

where Re denotes the real part of a complex number.
When the steady-state is reached, the value of PE so

calculated, in the case of the rotor cascade angle having
a value of p, coincides with the following expression:

PE= −I r
2 RR

s
−

V %rIr

s
(28)

and in the case of the machine with short-circuited
rotor, with:

PE= −I r
2 RR

s
(29)

If the angle is different from p or 0 the following
expression should be written:

PE= −I r
2 RR

s
+

V¦rIrcosf

s
(30)

where f is the angle between rotor voltage and current.
The following observation must be made, that con-

cern the way of calculating the rotor current. There are
some differences between steady-state and dynamic
models. For the steady-state model, according to the
references given in Fig. 2, the equation is as follows:

I( r=
(Rs+ j(X1+Xm))V( ¦r − jsXmV(

(Rs+ j(X1+Xm))(RR+ js(X2+Xm))+sXm
2 (31)

so, including Eq. (13) the following system is obtained:

d
dt
�E %q

E %d

�
=
� 0 −vs

vs 0
��V %rq

V %rd

�
−
� 0 −svs

svs 0
��E %q

E %d

�
−

1
T %0

��E %q
E %d

�
−
� 0 − (X−X %)

X−X % 0
��Isq

Isd

��
(20)

and from Eq. (3):

�Vsq

Vsd

�
−
�E %q

E %d

�
=
�R 0

0 R
��Isq

Isd

�
+
� 0 −X %

X % 0
��Isq

Isd

�
(21)

Finally, the previous equations can be written in a
simpler way as follows, by defining the complex num-
ber V( %r=V %rq+ jV %rd :

dE( %
dt

= jvsV( %r− jsvsE( %−
1

T %0
(E( %− j(X−X %)I( s) (22a)

V( s−E( %= (Rs+ jX %)I( s (22b)

This model is valid for the doubly-fed induction
machine, and the electrical circuit of Fig. 1 can repre-
sent the machine. So, the case of the induction machine
having short-circuited rotor is a special case of the
general case, considering the doubly-fed induction ma-
chine as the general case.

2.3. Steady-state

In order to obtain the steady-state models, it may be
assumed that dE( %/dt=0. By doing this in the general
model, the steady-state circuit can be given for the
induction machine. This circuit is represented in Fig. 2,
and the reference of the rotor current is chosen to be in
concordance to that chosen for the dynamic model.

The equivalence between steady-state and dynamic
model is achieved taking the following into account (see
Appendix C):

V( ¦r =
X2+Xm

Xm

V %( r (23)
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As for the dynamic model, from Eq. (7), taking into
account the fact that 8 %rqd=LrsL rr

−18rqd and also Eq.
(13) the rotor current can be calculated as:

I( r=
E( %

jXm

−
Xm

X2+Xm

I( s (32)

which only coincides with that given by Eq. (31) when
the machine reaches the steady-state. In spite of this
observation, the rotor current in the dynamic model
must never be calculated during the simulation.

4. Simulations

Simulations have been carried out with the model of
an induction generator corresponding to a WT having
the parameters given in Appendix D. It is a horizontal
axis three-blade asynchronous WT.

For the simulation, the mechanical power is calcu-
lated from the wind speed according to the equation

Pm=1/2rAU3cp [8], where r is the density of air (1.225
kg m−3), A is the area swept by the rotor, U is the wind
speed in m s−1 and cp is the power coefficient. The
power coefficient depends on the tip speed ratio, l,
which is the relationship between the speed of the
blades and the wind speed. Generally, the power coeffi-
cient can be expressed as a polynomial, cp=� ail

i. The
machine simulated here has the features described in
Appendix D.

The control system was not simulated, as it is not the
purpose of the paper to study how it works. So, the
simulation consists of the starting of the machine and
the injection in the rotor circuit, 4 s later, of a voltage
source with a value of 0.01 p.u., and an angle of p

radians with respect to the rotor current shown in Fig.
2. As a consequence, the evolution of the machine is
towards a new starting point.

In the simulation, the constant voltage injected in the
rotor is defined as proportional to the stator voltage, V %r
(kV). The electronic devices allow control not only of
the rms value but also of the angle of the rotor voltage.
From the point of view of the machine, this can be
simulated as a voltage source with a magnitude and an
angle.

In Fig. 3 the evolution of the slip can be seen. In Fig.
4 the evolution of mechanical and electrical power can
be seen. The change in the value of the mechanical
power is due to the fact that, with the change of the
slip, the tip speed ratio reaches another value and,
consequently, the power coefficient and the electrical
power do the same. The steady-state, real power-slip
curves are shown in Fig. 5. In this curve the evolution
of electrical power and slip can also be seen. It can be
observed here, that when a new steady-state is reached,
the results obtained with the dynamic model are coinci-
dent with those obtained with the steady-state one.

5. Conclusions

A model is presented in order to make it easier to
dynamically simulate doubly-fed induction machines.
Simulations are presented to prove that the model is
adequate from the point of view of steady-state. The
advantage of the model is that it allows one to deal
with the machine with only one differential equation in
the electrical part.

Fig. 3. Evolution of slip during starting and changing rotor voltage.

Fig. 4. Evolution of real and mechanical power during starting and
changing rotor voltage.

Fig. 5. Real power against slip curves for the doubly-fed induction
machine in dynamic and steady-state.
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Fig. 6. Stator, rotor and dq reference frames.
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Appendix B. Definition of variables

L %=Lss−LrsL rr
−1Lrs

One of the assumptions made to derive the model is
the fact that the harmonics of electrical magnitudes are
neglected. This assumption is generally accepted in
many applications involving electrical machines and
electronic devices. Nevertheless, the authors think that
it would be interesting to study a model able to deal
with harmonics.

Appendix A. Matrices used for the transformation of the
reference frames

In the matrices the following notation and the refer-
ence frames shown in Fig. 6 are used:

Dv=vs−V (33)

where:
� vs is the synchronous speed.
� V=pVR, with p being the number of pole pairs and

VR the rotor speed.
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Taking into account the fact that lrr= l2+ lrs and
lss= l1+ lrs the following equation can be written:

l ’=
lrrlss− l rs

2

lrr

= l1+
l2lrs

l2+ lrs

(43)

and:

X %= l %vs=
�

l1+
l2lrs

l2+ lrs

�
vs=X1+

X2Xm

X2+Xm

(44)

On the other hand:

L=Lss=
�lss 0

0 lss

�
=
�l1+ lrs 0

0 l1+ lrs

�
(45)

So, the inductance l can be defined as:

l= lss= l1+ lrs (46)

and the reactance X as:

X= lvs= (l1+ lrs)vs=X1+Xm (47)

Appendix C. Equivalence of voltage sources in the
dynamic and steady-state model

The equivalence of voltage sources representing the
rotor cascade can be deduced from the expressions of

stator currents in both models. So, taking the steady-
state model into account, the rms stator current can be
expressed, according to the references of Fig. 2, as:

I( s=
(RR+ js(X2+Xm))V( − jXmV( ¦r

(Rs+ j(X1+Xm))(RR+ js(X2+Xm))+sXm
2 (48)

On the other hand, with regard to the dynamic
model, by making dE( %/dt=0 in Eq. (22a) in order to
get a steady-state equivalent model, and taking into
account Eq. (22b) for substituting the value of E( % in
steady-state as a function of V( and I( s, the expression of
the rms value for the stator current can be written as:

I( s=
(RR+ js(X2+Xm))V( − j(X2+Xm)V( %r

(Rs+ j(X1+Xm))(RR+ js(X2+Xm))+sXm
2 (49)

As both expressions must coincide, Eq. (23) must be
satisfied.

Appendix D. Parameters of the induction generator
used in the simulations

Following the notation given in Fig. 2, the machine
used in the simulations has the following parameters,
RR=0.00612 p.u., Rs=0.00571 p.u., X1=0.06390 p.u.,
X2=0.18781 p.u., Xm=2.78000 p.u., H=3.05 p.u.,
gear box ratio, 1:44.38, rotor diameter, 15.2 m, rated
power, 350 kW, and rated voltage, 660 V

The power coefficient curve for this machine is given
by the equation cp=�i=0

10 ail
i, where the coefficients ai

are given in Table 1
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Table 1
Constants of the polynomial cp= f(l) for the machine employed in
the simulations

Coefficient Value

0.0914344959a0

−0.486804621a1

a2 0.944258742
−0.909776507a3

a4 0.488200324
−0.153325541a5

a6 0.0295642442
−0.0035602243a7

0.000261703947a8

a9 −1.07606521e-05
1.8992284e-07a10


